Background: Traditional computer simulation studies of radiofrequency catheter ablation (RFCA) usually neglect the anisotropy in myocardial electrical conductivity (MEC), which is likely an essential factor in governing the ablation outcome. Here, a numerical study of lesion characteristics during RFCA based on an anatomy-based model incorporating fiber orientation was performed to investigate the anisotropy in MEC. Methods: A three-dimensional thorax model including atria, blood, connective tissue, muscle, fat, and skin was constructed. The myocardial fiber was established through a rule-based method (RBM) based on the anatomical structure of the heart. The anisotropic MEC were 0.40 and 0.28 S m−1 in longitudinal and transverse directions, respectively. The ablation result was compared with the isotropic scenario where the isotropic MEC was the average of the anisotropic conductivities as 0.34 S m−1. Results: The complexity of fiber architecture varied with that of the local anatomical structure. At RF power of 20 W for 30 s, the tissue temperature and lesion volume were reduced by 2.8 ± 0.1% and 6.9 ± 0.5%, respectively, under anisotropic MEC around the ostium of the pulmonary vein and left atrial appendage. Those for the posterior wall and roof of the left atrium, and the inside of the superior vena cava were 1.9 ± 0.3% and 5.6 ± 1.2%, respectively. Conclusions: Anisotropy in MEC has a greater reduction effect on lesion volume than on tissue temperature during RFCA; this effect tends to be restrained at positions with more uniform fiber distributions and can be enhanced where significant variation in fiber architecture occurred.
CITATION STYLE
Gu, K., Yan, S., & Wu, X. (2022). Effect of anisotropy in myocardial electrical conductivity on lesion characteristics during radiofrequency cardiac ablation: a numerical study. International Journal of Hyperthermia, 39(1), 120–133. https://doi.org/10.1080/02656736.2021.2022220
Mendeley helps you to discover research relevant for your work.