Possibilities of atomic hydrogen storage by carbon nanotubes or graphite materials

Citations of this article
Mendeley users who have this article in their library.


Atomic hydrogen storage by carbon nanotubes (CNTs) and highly oriented pyrolytic graphite (HOPG) has been studied using a flow catalytic reactor and an ultra-high vacuum surface science apparatus including scanning tunneling microscope (STM), respectively. Defect sites on CNTs as adsorption sites of atomic hydrogen are introduced by oxidation pretreatment using La catalyst. Pd catalysts are then deposited on CNT surfaces for dissociation of H2 into atomic hydrogen, which spills over to the defect sites. In the best case, 1.5 wt% of hydrogen is stored in the defective CNT with Pd particles at 1 atm and 573 K. In temperature programmed desorption (TPD) experiments, H2 starts to desorb at 700-900 K depending on the annealing temperatures of CNTs prior to hydrogen storage. On the HOPG surface, hot atomic hydrogen produced by dissociation of H2 using tungsten wire desorbs from graphite terraces at 400-700 K, which is much lower than that on CNTs. It is possible that one can decrease the desorption temperature by changing the method of H2 dissociation. © 2005 Elsevier Ltd. All rights reserved.




Yoo, E., Habe, T., & Nakamura, J. (2005). Possibilities of atomic hydrogen storage by carbon nanotubes or graphite materials. Science and Technology of Advanced Materials, 6(6), 615–619. https://doi.org/10.1016/j.stam.2005.04.008

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free