Jaringan saraf tiruan merupakan salah satu metode soft computing yang banyak digunakan dan diterapkan di berbagai disiplin ilmu, termasuk analisis data runtun waktu. Tujuan utama dari analisis data runtun waktu adalah untuk memprediksi data runtun waktu yang dapat digunakan secara luas dalam berbagai data runtun waktu real, termasuk data harga saham. Banyak peneliti yang telah berkontribusi dalam analisis data runtun waktu dengan menggunakan berbagai pendekatan berbeda. Chen dan Hsu, Jilani dkk., Stevenson dan Porter, dan Hansun telah menggunakan metode fuzzy time series untuk meramalkan data mendatang, sementara beberapa peneliti lainnya menggunakan metode hibrid, seperti yang dilakukan oleh Subanar dan Suhartono, Popoola dkk, Popoola, Hansun dan Subanar. Di dalam penelitian ini, penulis mencoba untuk menerapkan metode jaringan saraf tiruan backpropagation pada salah satu indikator perubahan harga saham, yakni IHSG (Indeks Harga Saham Gabungan). Penelitian dilanjutkan dengan menghitung tingkat akurasi dan kehandalan metode yang telah diterapkan pada data IHSG. Pendekatan ini diharapkan dapat menjadi salah satu cara alternatif dalam meramalkan data IHSG sebagai salah satu indikator perubahan harga saham di Indonesia. Kata kunci—jaringan saraf tiruan, backpropagation, analisis data runtun waktu, soft computing, IHSG
CITATION STYLE
Hansun, S. (2013). Peramalan Data IHSG Menggunakan Metode Backpropagation. Jurnal ULTIMATICS, 5(1), 26–30. https://doi.org/10.31937/ti.v5i1.310
Mendeley helps you to discover research relevant for your work.