Population resistance and recovery after an extreme heat event are explained by thermal effects on life-history traits

2Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

Extreme heat events lower the fitness of organisms by inducing physiological stress and increasing metabolic costs. Yet, little is known about the role of life-history traits in elucidating population responses to extreme heat events. Here, we used a trait-based approach to understand population resistance and recovery using four closely related species of soil-dwelling Collembola. We measured thermal reaction norms of life-history traits (survival and reproductive traits) and used this information to identify ecological mechanisms linked to population responses after an extreme heat event (i.e. one week at 26–30°C, representing + 10°C above ambient conditions). Furthermore, we investigated potential shifts in the body size distribution of recovering populations to better understand if extreme heat events can restructure body size spectra within populations. While resistance remained unaltered across species in our study, the recovery response of the most heat-sensitive species (Protaphorura pseudovanderdrifti, predominantly a boreal species) was strongly affected by the extreme heat event (−54% population change compared to ambient conditions). Given that the fecundity (linked to recovery) of P. pseudovanderdrifti was more sensitive to heat than their survival (linked to resistance), we detected a decoupling between population resistance and recovery to an extreme heat event in this species. In addition, the detrimental effects of heat on fecundity were largely responsible for a drop in the proportion of small-sized (juvenile) individuals in the recovering populations of P. pseudovanderdrifti. Thermally insensitive resistance and recovery in the other three species (P. armata, P. fimata, P. tricampata; predominantly temperate species) can be explained by their high survival and fecundity at warmer temperatures. We highlight that life-history trait responses to warming can help explain population resistance and recovery after extreme heat events.

References Powered by Scopus

58531Citations
26491Readers

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Martínez-De León, G., Marty, A., Holmstrup, M., & Thakur, M. P. (2024). Population resistance and recovery after an extreme heat event are explained by thermal effects on life-history traits. Oikos, 2024(1). https://doi.org/10.1111/oik.10023

Readers over time

‘22‘23‘24‘2505101520

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 7

54%

Researcher 6

46%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 9

75%

Chemistry 1

8%

Social Sciences 1

8%

Environmental Science 1

8%

Save time finding and organizing research with Mendeley

Sign up for free
0