This article describes a computational strategy aimed at studying the structural communication in G-Protein Coupled Receptors (GPCRs) and G proteins. The strategy relies on comparative Molecular Dynamics (MD) simulations and analyses of wild-type (i.e., reference state) vs. mutated (i.e., perturbed state), or free (i.e., reference state) vs. bound (i.e., perturbed state) forms of a GPCR or a G protein. Bound forms of a GPCR include complexes with small ligands and/or receptor dimers/oligomers, whereas bound forms of heterotrimeric GDP-bound G proteins concern the complex with a GPCR. The computational strategy includes structure prediction of a receptor monomer (in the absence of high-resolution structure), a receptor dimer/oligomer, and a receptor-G protein complex, which constitute the inputs of MD simulations. Finally, the analyses of the MD trajectories are instrumental in inferring the structural/dynamics differences between reference and perturbed states of a GPCR or a G protein. In this respect, focus will be put on the analysis of protein structure networks and communication paths.
CITATION STYLE
Fanelli, F. (2012). Modeling the Structural Communication in Supramolecular Complexes Involving GPCRs (pp. 319–336). https://doi.org/10.1007/978-1-62703-023-6_18
Mendeley helps you to discover research relevant for your work.