Deep-COVID: Detection and Analysis of COVID-19 Outcomes Using Deep Learning

5Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

The coronavirus epidemic (COVID-19) is growing quickly around the globe. The first acute atypical respiratory illness was reported in December 2019, in Wuhan, China. This quickly spread from Wuhan city to other locations. Deep learning (DL) algorithms are one of the greatest solutions for consistently and readily recognizing COVID-19. Previously, many researchers used state-of-the-art approaches for the classification of COVID-19. In this paper, we present a deep learning approach with the EfficientnetB4 model, centered on transfer learning, for the classification of COVID-19. Transfer learning is a popular technique that uses pre-trained models that have been trained on the ImageNet database and employed on a new problem to increase generalization. We presented an in-depth training approach to extract the visual properties of COVID-19 in exchange for providing a medical assessment before infection testing. The proposed methodology is assessed on a publicly accessible X-ray imaging dataset. The proposed framework achieves an accuracy of 97%. Our model’s experimental findings demonstrate that it is extremely successful at identifying COVID-19 and that it may be supplied to health organizations as a precise, quick, and successful decision support system for COVID-19 identification.

Cite

CITATION STYLE

APA

Khalil, M. I., Rehman, S. U., Alhajlah, M., Mahmood, A., Karamat, T., Haneef, M., & Alhajlah, A. (2022). Deep-COVID: Detection and Analysis of COVID-19 Outcomes Using Deep Learning. Electronics (Switzerland), 11(22). https://doi.org/10.3390/electronics11223836

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free