Selenium (Se) is a critical element in thyroid function, and variable dietary Se intake influences immunity. Consequently, dietary Se could influence development of thyroid autoimmunity and provide an adjunct to treat autoimmune thyroid dysfunction. Nonobese diabetic (NOD).H2h4 mice spontaneously develop autoantibodies to thyroglobulin (Tg) and thyroid peroxidase (TPO). This mouse strain expressing a human thyroid-stimulating hormone receptor (TSHR) A-subunit transgene in the thyroid also develops pathogenic TSHR autoantibodies. In this report, we investigated whether dietary Se influences these immune processes. Male and female wild-type and transgenic NOD.H2h4 mice were maintained on normal-, low-, or high-Se (0.1, 0, or 1.0 mg/kg) rodent diets. After 4 months, Se serum levels were extremely low or significantly increased on 0 or 1.0 mg/kg Se, respectively. Varying Se intake affected Tg antibody (TgAb) levels after 2 (but not 4) months; conversely, TPO antibody (TPOAb) levels were altered by dietary Se after 4 (but not 2) months. These data correspond to the earlier development of TgAb than TPOAb in NOD.H2h4 mice. In males, TgAb levels were enhanced by high Se and in females by low Se intake. Se intake had no effect on pathogenic TSHR autoantibodies in TSHR transgenic NOD.H2h4 females. In conclusion, in susceptible NOD.H2h4 mice, we found no evidence that a higher dietary Se intake ameliorates thyroid autoimmunity by reducing autoantibodies to Tg, TPO, or the TSHR. Instead, our finding that low dietary Se potentiates the development of autoantibodies to Tg and TPO in females is consistent with reports in humans of an increased prevalence of autoimmune thyroiditis in low-Se regions.
CITATION STYLE
McLachlan, S. M., Aliesky, H., Banuelos, B., Que Hee, S. S., & Rapoport, B. (2017). Variable effects of dietary selenium in mice that spontaneously develop a spectrum of thyroid autoantibodies. Endocrinology, 158(11), 3754–3764. https://doi.org/10.1210/en.2017-00275
Mendeley helps you to discover research relevant for your work.