Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus

195Citations
Citations of this article
150Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Vibrio parahaemolyticus isolates display variation in colony morphology, alternating between opaque (OP) and translucent (TR) cell types. Phase variation is the consequence of genetic alterations in the locus encoding the quorum sensing output regulator OpaR. Here, we show that both cell types form stable, but distinguishable biofilms that differ with respect to attachment and detachment profiles to polystyrene, pellicle formation and stability at the air/medium interface, and submerged biofilm architecture and dispersion at a solid/liquid interface. The pellicle, which is a cohesive mat of cells, was exploited to identify mutants having altered or defective biofilm formation. Transposon insertion mutants were obtained with defects in genes affecting multiple cell surface characteristics, including extracellular polysaccharide, mannose-sensitive haemagglutinin type 4 pill and polar (but not lateral) flagella. Other insertions disrupted genes coding for potential secreted proteins or transporters of secreted proteins, specifically haemolysin co-regulated protein and an RTX toxin-like membrane fusion transporter, as well as potential modifiers of cell surface molecules (nagAC operon). The pellicle screen also identified mutants with lesions in regulatory genes encoding H-MS, a CsgD-like repressor and an AraC-like protein. This work initiates the characterization of V. parahaemolyticus biofilm formation in the OP and TR cell types and identifies a diverse repertoire of cell surface elements that participate in determining multicellular architecture. © 2004 Blackwell Publishing Ltd.

Cite

CITATION STYLE

APA

Enos-Berlage, J. L., Guvener, Z. T., Keenan, C. E., & McCarter, L. L. (2005). Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Molecular Microbiology, 55(4), 1160–1182. https://doi.org/10.1111/j.1365-2958.2004.04453.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free