In this article, we have designed and synthesized a novel donor-π-acceptor (D-π-A) type porphyrin-based sensitizer (denoted UI-5), in which a carboxyl anchoring group and a 9,9-dimethyl fluorene were introduced at the meso-positions of porphyrin ring via phenylethynyl and ethynyl bridging units, respectively. Long alkoxy chains in ortho-positions of the phenyls were supposed to reduce the degree of dye aggregation, which tends to affect electron injection yield in a photovoltaic cell. The cyclic voltammetry was employed to determine the band gap of UI-5 to be 1.41 eV based on the HOMO and LUMO energy levels, which were estimated by the onset oxidation and reduction potentials. The incident monochromatic photon-to-current conversion efficiency of the UI-5 DSSC assembled with double-layer (20 nm-sized TiO2/400 nm-sized TiO2) film electrodes appeared lower upon overall ranges of the excitation wavelengths, but exhibited a higher value over the NIR ranges (λ = 650-700 nm) compared to the common reference sensitizer N719. The UI-5-sensitized cell yielded a relatively poor device performance with an overall conversion efficiency of 0.74% with a short circuit photocurrent density of 3.05 mA/cm2, an open circuit voltage of 0.54 mV and a fill factor of 0.44 under the standard global air mass (AM 1.5) solar conditions. However, our report about the synthesis and the photovoltaic characteristics of a porphyrin-based sensitizer in a D-π - A structure demonstrated a significant complex relationship between the sensitizer structure and the cell performance.
CITATION STYLE
Lee, S., Sarker, A. K., & Hong, J. D. (2014). A zinc porphyrin sensitizer modified with donor and acceptor groups for dye-sensitized solar cells. Bulletin of the Korean Chemical Society, 35(10), 3052–3058. https://doi.org/10.5012/bkcs.2014.35.10.3052
Mendeley helps you to discover research relevant for your work.