FDTD studies of metallic nanoparticle systems

4Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.
Get full text

Abstract

This paper provides an overview of the optical properties of plasmonic nanoparticles, using gold nanowires as a model system. The properties were calculated using classical electrodynamics methods with bulk metal dielectric constants, as these methods provide a nearly quantitative description of nanoparticle optical response that can be used for particles with dimensions of a few nanometers to many hundreds of nanometers. The nanowire calculations are based on the finite-difference time-domain (FDTD) method in two dimensions, and we specifically consider the transmission of light through nanowire arrays, as this provides a simple nanomaterial construct which still displays the richness of optical phenomena that is found for more general nanostructures. The calculations show a number of features that are known for other nanostructures, including the red-shifting of plasmon resonances as wire spacing is decreased, and as particle aspect ratio is increased. In addition, the influence of dielectric coatings on the wires is examined, including factors which determine dielectric sensitivity. These results provide insight into what structures will be most effective for index of refraction sensing applications. © 2009 Springer Science + Business Media B.V.

Cite

CITATION STYLE

APA

Atkinson, A. L., Mcmahon, J. M., & Schatz, G. C. (2009). FDTD studies of metallic nanoparticle systems. In NATO Science for Peace and Security Series A: Chemistry and Biology (pp. 11–32). https://doi.org/10.1007/978-90-481-2590-6_2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free