Cannabinoid receptors and their endogenous ligands have been recently identified in the brain as potent inhibitors of neurotransmitter release. Here we show that, in a rat model of Parkinson's disease induced by unilateral nigral lesion with 6-hydroxydopamine (6-OHDA), the striatal levels of anandamide, but not that of the other endocannabinoid 2-arachidonoylglycerol, were increased. Moreover, we observed a decreased activity of the anandamide membrane transporter (AMT) and of the anandamide hydrolase [fatty acid amide hydrolase (FAAH)], whereas the binding of anandamide to cannabinoid receptors was unaffected. Spontaneous glutamatergic activity recorded from striatal spiny neurons was higher in 6-OHDA-lesioned rats. Inhibition of AMT by N-(4-hydroxyphenyl)-arachidonoylamide (AM-404) or by VDM11, or stimulation of the cannabinoid CB1 receptor by HU-210 reduced glutamatergic spontaneous activity in both naïve and 6-OHDA-lesioned animals to a similar extent. Conversely, the FAAH inhibitors phenylmethylsulfonyl fluoride and methylarachidonoyl fluorophosphonate were much more effective in 6-OHDA-lesioned animals. The present study shows that inhibition of anandamide hydrolysis might represent a possible target to decrease the abnormal cortical glutamatergic drive in Parkinson's disease.
CITATION STYLE
Gubellini, P., Picconi, B., Bari, M., Battista, N., Calabresi, P., Centonze, D., … Maccarrone, M. (2002). Experimental parkinsonism alters endocannabinoid degradation: Implications for striatal glutamatergic transmission. Journal of Neuroscience, 22(16), 6900–6907. https://doi.org/10.1523/jneurosci.22-16-06900.2002
Mendeley helps you to discover research relevant for your work.