α-PbO2 was introduced into the intermediate layer of an electrode to prevent the separation of the electrodeposited layer and maintain oxidizing power. The resulting Ti/α-PbO2/β-PbO2 composite electrode was applied to the electrochemical decolorization of methylene blue (MB) and the operating conditions for MB decolorization with the Ti/α-PbO2/β-PbO2 electrode were opti-mized. The morphology, structure, composition, and electrochemical performance of Ti/α-PbO2 and Ti/α-PbO2/β-PbO2 anode were evaluated using scanning electron microscopy (SEM), X-ray diffrac-tion (XRD), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The optimum operating parameters for the electrochemical decol-orization of MB at Ti/α-PbO2/β-PbO2 composites were as follows: Na2SO4 electrolyte 0.05 g L−1, initial concentration of MB 9 mg L−1, cell voltage 20 V, current density 0.05–0.10 A cm−2, and pH 6.0. MB dye could be completely decolorized with Ti/α-PbO2/β-PbO2 for the treatment time of less than one hour, and the dye decolorization efficiency with Ti/α-PbO2/β-PbO2 was about 5 times better, compared with those obtained with Ti/α-PbO2 .
CITATION STYLE
Molla, M. A. I., Yanagi, G., Furukawa, M., Tateishi, I., Katsumata, H., & Kaneco, S. (2021). Optimization of operating conditions for electrochemical decolorization of methylene blue with ti/α-pbo2/β-pbo2 composite electrode. Journal of Composites Science, 5(5). https://doi.org/10.3390/jcs5050117
Mendeley helps you to discover research relevant for your work.