Prediction Models for Conversion From Mild Cognitive Impairment to Alzheimer’s Disease: A Systematic Review and Meta-Analysis

38Citations
Citations of this article
86Readers
Mendeley users who have this article in their library.

Abstract

Background and Purpose: Alzheimer’s disease (AD) is a devastating neurodegenerative disorder with no cure, and available treatments are only able to postpone the progression of the disease. Mild cognitive impairment (MCI) is considered to be a transitional stage preceding AD. Therefore, prediction models for conversion from MCI to AD are desperately required. These will allow early treatment of patients with MCI before they develop AD. This study performed a systematic review and meta-analysis to summarize the reported risk prediction models and identify the most prevalent factors for conversion from MCI to AD. Methods: We systematically reviewed the studies from the databases of PubMed, CINAHL Plus, Web of Science, Embase, and Cochrane Library, which were searched through September 2021. Two reviewers independently identified eligible articles and extracted the data. We used the Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies (CHARMS) checklist for the risk of bias assessment. Results: In total, 18 articles describing the prediction models for conversion from MCI to AD were identified. The dementia conversion rate of elderly patients with MCI ranged from 14.49 to 87%. Models in 12 studies were developed using the data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). C-index/area under the receiver operating characteristic curve (AUC) of development models were 0.67–0.98, and the validation models were 0.62–0.96. MRI, apolipoprotein E genotype 4 (APOE4), older age, Mini-Mental State Examination (MMSE) score, and Alzheimer’s Disease Assessment Scale cognitive (ADAS-cog) score were the most common and strongest predictors included in the models. Conclusion: In this systematic review, many prediction models have been developed and have good predictive performance, but the lack of external validation of models limited the extensive application in the general population. In clinical practice, it is recommended that medical professionals adopt a comprehensive forecasting method rather than a single predictive factor to screen patients with a high risk of MCI. Future research should pay attention to the improvement, calibration, and validation of existing models while considering new variables, new methods, and differences in risk profiles across populations.

Cite

CITATION STYLE

APA

Chen, Y., Qian, X., Zhang, Y., Su, W., Huang, Y., Wang, X., … Ma, Y. (2022, April 7). Prediction Models for Conversion From Mild Cognitive Impairment to Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Frontiers in Aging Neuroscience. Frontiers Media S.A. https://doi.org/10.3389/fnagi.2022.840386

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free