Crystalline α- and γ-Al2O3 exhibit in many applications high wear resistance, chemical resistance, and hot hardness, making them interesting materials for production engineering. To synthesize α-Al2O3 with high coating thickness of s ≥ 10 μm, chemical vapor deposition at temperatures T > 1000 °C is well established. However, there are almost no studies dealing with the synthesis of thick α-Al2O3 by physical vapor deposition (PVD) at high temperatures T > 700 °C. High-temperature deposition of thick coatings can be realized by means of the dense hollow cathode plasma, combined with the transport function of the plasma gas in high-speed (HS) PVD. Herein, crystalline α- and γ-Al2O3 films are deposited on cemented carbides at substrate temperatures T s ≈ 570 °C and T s ≈ 780 °C by HS-PVD. These coatings exhibit a thickness up to s = 20 μm. Moreover, phase analysis presents α-phases in coatings synthesized at substrate temperature of T s ≈ 780 °C with significant higher hardness than films by T s ≈ 570 °C. These release the potential of HS-PVD to synthesize α-Al2O3 coatings with high thickness. Thereby, a higher thickness of these coatings is beneficial for the wear protection of turning and die casting tools.
CITATION STYLE
Bobzin, K., Kalscheuer, C., & Hassanzadegan Aghdam, P. (2023). An Approach to Synthesize Thick α- and γ-Al2O3 Coatings by High-Speed Physical Vapor Deposition. Advanced Engineering Materials, 25(4). https://doi.org/10.1002/adem.202201195
Mendeley helps you to discover research relevant for your work.