Evaluation of in vitro growth factor treatments on fbrochondrogenesis by synovial membrane cells from osteoarthritic and nonosteoarthritic joints of dogs

13Citations
Citations of this article
56Readers
Mendeley users who have this article in their library.

Abstract

Objective-To determine the in vitro effects of selected growth factors on fibrochondro-genesis by synovial membrane cells from nonosteoarthritic (normal) and osteoarthritic joints of dogs. Animals-5 dogs with secondary osteoarthritis of shoulder or stife joints and 6 dogs with normal joints. Procedures-Synovial membrane cells were harvested from normal and osteoarthritic joints and cultured in monolayer with or without (control) basic fibroblast growth factor, transforming growth factor-β1, and insulin-like growth factor-1. In the cultured cells, fibro-chondrogenesis was measured by use of a real-time reverse transcriptase PCR assay to determine relative expressions of collagen I, collagen II, and aggrecan genes and of 3 genes involved in embryonic chondrogenesis: Sry-type homeobox protein-9 (SOX-9), frizzled-motif associated with bone development (Frzb), and regulator of G-protein signaling-10 (RGS-10). Tissue collagen content was measured via a hydroxyproline assay, and sulfated glycosami-noglycan content was measured via a 1,9-dimethylmethylene blue assay. Cellularity was determined via a double-stranded DNA assay. Immunohistochemical analysis for collagens I and II was also performed. Results-In vitro collagen synthesis was enhanced by growth factor stimulation. Although osteoarthritic-joint synoviocytes could undergo a fibrocartilage-like phenotypic shift, their production of collagenous extracellular matrix was less than that of normal-joint synovio-cytes. Gene expressions of SOX-9 and RGS-10 were highest in the osteoarthritic-joint cells; Frzb expression was highest in growth factor treated cells. Conclusions and Clinical Relevance-Autogenous synovium may be a viable cell source for meniscal tissue engineering. Gene expressions of SOX-9 and RGS-10 may be potential future targets for in vitro enhancement of chondrogenesis. (Am J Vet Res 2011;72:500-511).

Cite

CITATION STYLE

APA

Warnock, J. J., Fox, D. B., Stoker, A. M., & Cook, J. L. (2011). Evaluation of in vitro growth factor treatments on fbrochondrogenesis by synovial membrane cells from osteoarthritic and nonosteoarthritic joints of dogs. American Journal of Veterinary Research, 72(4), 500–511. https://doi.org/10.2460/ajvr.72.4.500

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free