Application of regression kriging to air pollutant concentrations in Japan with high spatial resolution

27Citations
Citations of this article
49Readers
Mendeley users who have this article in their library.

Abstract

The application of regression kriging to air pollutants in Japan was examined for the purpose of providing a practical method to obtain a spatial distribution with sufficient accuracy and a high spatial resolution of 1 × 1 km. We used regulatory air monitoring data from the years 2009 and 2010. Predictor variables at 1 × 1 km resolution were prepared from various datasets to perform regression kriging. The prediction performance was assessed by indicators, including root mean squared error (RMSE) and R2, calculated from the leave-one-out cross validation results, and was compared to the results obtained from a linear regression method, often referred to as land use regression (LUR). Regression kriging wellexplained the spatial variability of NO2, with R2 values of 0.77 and 0.78. Ozone (O3) was moderately explained, with R2 values of 0.52 and 0.66. The reason for this difference in performance between NO2 and O3 might be the characteristics of these pollutants - primary or secondary. Regression kriging outperformed the linear regression method with regard to RMSE and R2. The performance of regression kriging in this work was comparable to that found in previous studies. The results indicate that regression kriging is a practical procedure that can be applied for the prediction of the spatial distribution of air pollutants in Japan, with sufficient accuracy and a high spatial resolution.

Cite

CITATION STYLE

APA

Araki, S., Yamamoto, K., & Kondo, A. (2015). Application of regression kriging to air pollutant concentrations in Japan with high spatial resolution. Aerosol and Air Quality Research, 15(1), 234–241. https://doi.org/10.4209/aaqr.2014.01.0011

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free