Quantum Lazy Training

2Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

In the training of over-parameterized model functions via gradient descent, sometimes the parameters do not change significantly and remain close to their initial values. This phenomenon is called lazy training and motivates consideration of the linear approximation of the model function around the initial parameters. In the lazy regime, this linear approximation imitates the behavior of the parameterized function whose associated kernel, called the tangent kernel, specifies the training performance of the model. Lazy training is known to occur in the case of (classical) neural networks with large widths. In this paper, we show that the training of geometrically local parameterized quantum circuits enters the lazy regime for large numbers of qubits. More precisely, we prove bounds on the rate of changes of the parameters of such a geometrically local parameterized quantum circuit in the training process, and on the precision of the linear approximation of the associated quantum model function; both of these bounds tend to zero as the number of qubits grows. We support our analytic results with numerical simulations.

References Powered by Scopus

Quantum computing in the NISQ era and beyond

4821Citations
N/AReaders
Get full text

Variational quantum algorithms

1609Citations
N/AReaders
Get full text

Supervised learning with quantum-enhanced feature spaces

1338Citations
N/AReaders
Get full text

Cited by Powered by Scopus

The Quantum Path Kernel: A Generalized Neural Tangent Kernel for Deep Quantum Machine Learning

3Citations
N/AReaders
Get full text

Expressibility-induced concentration of quantum neural tangent kernels

2Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Abedi, E., Beigi, S., & Taghavi, L. (2023). Quantum Lazy Training. Quantum, 7. https://doi.org/10.22331/q-2023-04-27-989

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 5

56%

Lecturer / Post doc 2

22%

Researcher 2

22%

Readers' Discipline

Tooltip

Physics and Astronomy 5

56%

Computer Science 3

33%

Engineering 1

11%

Article Metrics

Tooltip
Social Media
Shares, Likes & Comments: 58

Save time finding and organizing research with Mendeley

Sign up for free