Exosomal MicroRNAs Derived From Umbilical Mesenchymal Stem Cells Inhibit Hepatitis C Virus Infection

  • Qian X
  • Xu C
  • Fang S
  • et al.
138Citations
Citations of this article
122Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Hepatitis C virus (HCV) is a significant global public health problem, causing more than 350,000 deaths every year. Although the development of direct-acting antivirals has improved the sustained virological response rate in HCV patients, novel anti-HCV agents with higher efficacy as well as better tolerance and cheaper production costs are still urgently needed. Cell-based therapy, especially its unique and strong paracrine ability to transfer information to other cells via extracellular vesicles such as exosomes, has become one of the most popular therapeutic methods in recent years. In our study, exosomes secreted from umbilical mesenchymal stem cells (uMSCs), which are widely used in regenerative medicine, inhibited HCV infection in vitro, especially viral replication, with low cell toxicity. Our analysis revealed that microRNAs (miRNAs) from uMSC-derived exosomes (uMSC-Exo) had their unique expression profiles , and these functional miRNAs, mainly represented by let-7f, miR-145, miR-199a, and miR-221 released from uMSC-Exo, largely contributed to the suppression of HCV RNA replication. These four miRNAs possessed binding sites in HCV RNA as demonstrated by the target prediction algorithm. In addition , uMSC-Exo therapy showed synergistic effect when combined with U.S. Food and Drug Administration-approved interferon-a or telaprevir, enhancing their anti-HCV ability and thus improving the clinical significance of these regenerative substances for future application as optimal adjuvants of anti-HCV therapy. STEM CELLS TRANSLATIONAL MEDICINE 2016;5:1190-1203 SIGNIFICANCE This work reported, for the first time, the identification of stem cell-derived exosomes of anti-viral activity. Umbilical mesenchymal stem cell-secreted exosomes inhibited hepatitis C virus infection through transporting a mixture of microRNAs complementing the viral genomes to the host cells. This finding provides insights and prospects for physiologically secreted substances for antiviral therapy.

Cite

CITATION STYLE

APA

Qian, X., Xu, C., Fang, S., Zhao, P., Wang, Y., Liu, H., … Qi, Z. (2016). Exosomal MicroRNAs Derived From Umbilical Mesenchymal Stem Cells Inhibit Hepatitis C Virus Infection. Stem Cells Translational Medicine, 5(9), 1190–1203. https://doi.org/10.5966/sctm.2015-0348

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free