Lévy processes, saltatory foraging, and superdiffusion

14Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

It is well established that resource variability generated by spatial patchiness and turbulence is an important influence on the growth and recruitment of planktonic fish larvae. Empirical data show fractal-like prey distributions, and simulations indicate that scale-invariant foraging strategies may be optimal. Here we show how larval growth and recruitment in a turbulent environment can be formulated as a hitting time problem for a jump-diffusion process. We present two theoretical results. Firstly, if jumps are of a fixed size and occur as a Poisson process (embedded within a drift-diffusion), recruitment is effectively described by a diffusion process alone. Secondly, in the absence of diffusion, and for "patchy" jumps (of negative binomial size with Pareto inter-arrivals), the encounter process becomes superdiffusive. To synthesise these results we conduct a strategic simulation study where "patchy" jumps are embedded in a drift-diffusion process. We conclude that increasingly Lévy-like predator foraging strategies can have a significantly positive effect on recruitment at the population level. © 2008 EDP Sciences.

Cite

CITATION STYLE

APA

Burrow, J. F., Baxter, P. D., & Pitchford, J. W. (2008). Lévy processes, saltatory foraging, and superdiffusion. Mathematical Modelling of Natural Phenomena, 3(3), 115–130. https://doi.org/10.1051/mmnp:2008060

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free