One-pot synthesis of hollow hydrangea Au nanoparticles as a dual catalyst with SERS activity for: In situ monitoring of a reduction reaction

22Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

The controlled synthesis of metallic nanomaterials has attracted the interest of many researchers due to their shape-dependent physical and chemical properties. However, most of the synthesized nanocrystals cannot be combined with spectroscopy to measure the reaction kinetics, thus limiting their use in monitoring the catalytic reaction process to elucidate its mechanism. As a powerful analytical tool, surface-enhanced Raman spectroscopy (SERS) can be used to achieve in situ monitoring of catalytic reactions by developing bifunctional metal nanocrystals with both SERS and catalytic activities. Herein, we have developed a simple one-pot synthesis method for the large-scale and size-controllable preparation of highly rough hydrangea Au hollow nanoparticles. The growth mechanism of flower-like Au hollow nanostructures was also discussed. The hollow nanostructure with a 3D hierarchical flower shell combines the advantages of hollow nanostructure and hierarchical nanostructure, which possess high SERS activity and good catalytic activity simultaneously. Furthermore, the hydrangea Au hollow crystals were used as a bifunctional nanocatalyst for in situ monitoring of the reduction reaction of 4-nitrothiophenol to the 4-aminothiophenol.

Cite

CITATION STYLE

APA

Qin, Y., Lu, Y., Pan, W., Yu, D., & Zhou, J. (2019). One-pot synthesis of hollow hydrangea Au nanoparticles as a dual catalyst with SERS activity for: In situ monitoring of a reduction reaction. RSC Advances, 9(18), 10314–10319. https://doi.org/10.1039/c9ra00733d

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free