Investigation of Tack Coat Bond Damage Mechanism in Asphalt Surfaced Pavements under Dynamic Truck Loads

3Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Bonding created by the tack coat allows the pavement system to carry heavy truck loads as a monolithic structure and improves the structural integrity. In Oregon and throughout the U.S.A., CSS-1H is the most commonly used tack coat type. However, field observations have revealed that new engineered tack coats, although more expensive, outperform the conventional types in relation to shear resistance. In this study, the impact of these new engineered emulsions on in-situ bond performance was quantified by laboratory testing and numerical modeling. Bonding damage performance of all tack coats was experimentally determined by using direct shear tests. Full-scale moving truck load models were developed and calibrated using the load-displacement parameters obtained from the laboratory shear tests. The impact of adverse construction conditions, such as dust, rain, and tack coat coverage, on tack coat bond damage under heavy truck loads was determined. It was concluded that the presence of dust had relatively the lowest contribution to shear damage. Rain during construction had the highest impact on the damage behavior and tack coat application on a wet surface increases the potential for damage by 20.1%. A 50% coverage of tack coat during construction resulted in 12.8% higher damage levels compared with 100% tack coat coverage of the surface area. Moving load models for heavy trucks caused 2.44 times more bonding damage at the bonded interface compared with the damage created by smaller trucks (F450).

Cite

CITATION STYLE

APA

Estaji, M., Coleri, E., & Wruck, B. (2020). Investigation of Tack Coat Bond Damage Mechanism in Asphalt Surfaced Pavements under Dynamic Truck Loads. Transportation Research Record, 2674(3), 317–328. https://doi.org/10.1177/0361198120909838

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free