Self-healing biogeopolymers using biochar-immobilized spores of pure-and co-cultures of bacteria

18Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.

Abstract

A sustainable solution for crack maintenance in geopolymers is necessary if they are to be the future of modern green construction. This study aims to develop self-healing biogeopolymers that could potentially rival bioconcrete. First, a suitable healing agent was selected from Bacillus subtilis, Bacillus sphaericus, and Bacillus megaterium by directly adding their spores in the geopolymers and subsequently exposing them to a precipitation medium for 14 days. Scanning electron microscope with energy-dispersive X-ray (SEM-EDX) analysis revealed the formation of mineral phases for B. subtilis and B. sphaericus. Next, the effect of biochar-immobilization and co-culturing (B. sphaericus and B. thuringiensis) on the healing efficiencies of the geopolymers were tested and optimized by measuring their ultrasonic pulse velocities weekly over a 28-day healing period. The results show that using co-cultured bacteria significantly improved the observed efficiencies, while biochar-immobilization had a weak effect, but yielded an optimum response between 0.3–0.4 g/mL. The maximum crack width sealed was 0.65 mm. Through SEM-EDX and FTIR analyses, the precipitates in the cracks were identified to be mainly CaCO3. With that, there is potential in developing self-healing biogeopolymers using biochar-immobilized spores of bacterial cultures.

Cite

CITATION STYLE

APA

Doctolero, J. Z. S., Beltran, A. B., Uba, M. O., Tigue, A. A. S., & Promentilla, M. A. B. (2020). Self-healing biogeopolymers using biochar-immobilized spores of pure-and co-cultures of bacteria. Minerals, 10(12), 1–17. https://doi.org/10.3390/min10121114

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free