Altered transforming growth factor-β (TGF-β) signalling has been implicated in tumour development and progression. However, the molecular mechanism behind this alteration is poorly understood. Here we show that profilin-2 (Pfn2) increases Smad2 and Smad3 expression via an epigenetic mechanism, and that profilin-2 and Smad expression correlate with an unfavourable prognosis of lung cancer patients. Profilin-2 overexpression promotes, whereas profilin-2 knockdown drastically reduces, lung cancer growth and metastasis. We show that profilin-2 suppresses the recruitment of HDAC1 to Smad2 and Smad3 promoters by preventing nuclear translocation of HDAC1 through protein-protein interaction at the C terminus of both proteins, leading to the transcriptional activation of Smad2 and Smad3. Increased Smad2 and Smad3 expression enhances TGF-β1-induced EMT and production of the angiogenic factors VEGF and CTGF. These findings reveal a new regulatory mechanism of TGF-β1/Smad signalling, and suggest a potential molecular target for the development of anticancer drugs.
CITATION STYLE
Tang, Y. N., Ding, W. Q., Guo, X. J., Yuan, X. W., Wang, D. M., & Song, J. G. (2015). Epigenetic regulation of Smad2 and Smad3 by profilin-2 promotes lung cancer growth and metastasis. Nature Communications, 6. https://doi.org/10.1038/ncomms9230
Mendeley helps you to discover research relevant for your work.