The effect of curcumin on human bronchial epithelial cells exposed to fine particulate matter: A predictive analysis

11Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

Fine particulate matter (PM 2.5) has been associated in humans with inflammation, oxidative stress and cancer. Studies had shown that curcumin could potentially inhibit these effects; however, there had been no in vivo or in vitro reports about the effects of curcumin on organisms exposed to PM 2.5. This predictive study explored the possible biological functions and pathways involved in the mechanism of curcumin inhibition of the hazardous effects of PM 2.5. For predictive analysis, microarray data were used to investigate the effect of PM 2.5 on human bronchial epithelial cells (HBEC), and human target proteins of curcumin were retrieved from PubChem. Two protein-protein interaction (PPI) networks were established based upon differential genes and target proteins, respectively, and the common network of these two networks was found. Functional and pathway analysis of the common network was performed using the Ingenuity Pathways Analysis (IPA) software. The results suggested that the predictive effects of curcumin on HBEC exposed to PM 2.5 were involved in bio-functions, including inflammatory response of airway, cancerogenesis, and apoptosis, and in pathways such as cancer, glucocorticoid receptor signaling, and NF-kappaB signaling. This study predicted for the first time that curcumin could be a potential therapeutic agent for protecting the human airway from the hazardous effects of PM 2.5. © 2012 by the authors; licensee MDPI, Basel, Switzerland.

Cite

CITATION STYLE

APA

Zhang, Z., Niu, X., Lu, C., Jiang, M., Xiao, G. G., & Lu, A. (2012). The effect of curcumin on human bronchial epithelial cells exposed to fine particulate matter: A predictive analysis. Molecules, 17(10), 12406–12426. https://doi.org/10.3390/molecules171012406

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free