The user’s demands in the system supported by the Internet of Things are frequently controlled effectively using the pervasive computing system. Pervasive computing is a term used to describe a system that integrates several communication and distributed network technologies. Even so, it properly accommodates user needs. It is quite difficult to be inventive in the pervasive computing system when it comes to the delivery of information, handling standards, and extending heterogeneous aid for scattered clients. In this view, our paper intends to utilize a Dispersed and Elastic Computing Model (DECM) to enable proper and reliable communication for people who are using IoT-based wearable healthcare devices. Recurrent Reinforcement Learning (RRL) is used in the suggested model and the system that is connected to analyze resource allocation in response to requirements and other allocative factors. To provide effective data transmission over wearable medical devices, the built system gives managing mobility additional consideration to resource allocation and distribution. The results show that the pervasive computing system provides services to the user with reduced latency and an increased rate of communication for healthcare wearable devices based on the determined demands of the resources. This is an important aspect of sustainable healthcare. We employ the assessment metrics consisting of request failure, response time, managed and backlogged requests, bandwidth, and storage to capture the consistency of the proposed model.
CITATION STYLE
Dewi, D. A., Thinakan, R., Batumalay, M., & Kurniawan, T. B. (2023). A Model for Pervasive Computing and Wearable Devices for Sustainable Healthcare Applications. International Journal of Advanced Computer Science and Applications, 14(10), 527–530. https://doi.org/10.14569/IJACSA.2023.0141056
Mendeley helps you to discover research relevant for your work.