For 2-2 scattering in quantum field theories, the usual fixed t dispersion relation exhibits only two-channel symmetry. This Letter considers a crossing symmetric dispersion relation, reviving certain old ideas from the 1970s. Rather than the fixed t dispersion relation, this needs a dispersion relation in a different variable z, which is related to the Mandelstam invariants s, t, u via a parametric cubic relation making the crossing symmetry in the complex z plane a geometric rotation. The resulting dispersion is manifestly three-channel crossing symmetric. We give simple derivations of certain known positivity conditions for effective field theories, including the null constraints, which lead to two sided bounds and derive a general set of new nonperturbative inequalities. We show how these inequalities enable us to locate the first massive string state from a low energy expansion of the four dilaton amplitude in type II string theory. We also show how a generalized (numerical) Froissart bound, valid for all energies, is obtained from this approach.
CITATION STYLE
Sinha, A., & Zahed, A. (2021). Crossing Symmetric Dispersion Relations in Quantum Field Theories. Physical Review Letters, 126(18). https://doi.org/10.1103/PhysRevLett.126.181601
Mendeley helps you to discover research relevant for your work.