Kinases, which function in numerous cell signaling processes, are among the best characterized groups of client proteins for the 90-kDa heat shock protein (HSP90), a molecular chaperone that suppresses the aggregation and maintains the proper folding of its substrate proteins (i.e., clients). No high-throughput proteomic method, however, has been developed for the characterizations of the interactions between HSP90 and the human kinome. Herein, by employing a parallel-reaction monitoring (PRM)-based targeted proteomic method, we found that 99 out of the 249 detected kinase proteins display diminished expression in cultured human cells upon treatment with ganetespib, a small-molecule HSP90 inhibitor. PRM analysis of kinase proteins in the affinity pull-down samples showed that 86 out of the 120 detected kinases are enriched from the CRISPR-engineered cells where a tandem affinity tag was conjugated with the C-terminus of endogenous HSP90β protein over the parental cells. Together, our results from the two complementary quantitative proteomic experiments offer systematic characterizations about the HSP90-kinase interactions at the entire proteome scale and reveal extensive interactions between HSP90 and kinase proteins in human cells.
CITATION STYLE
Miao, W., Li, L., & Wang, Y. (2019). High-Throughput Targeted Quantitative Analysis of the Interaction between HSP90 and Kinases. Analytical Chemistry, 91(18), 11507–11509. https://doi.org/10.1021/acs.analchem.9b03320
Mendeley helps you to discover research relevant for your work.