Multisession anodal epidural direct current stimulation of the auditory cortex delays the progression of presbycusis in the Wistar rat

Citations of this article
Mendeley users who have this article in their library.

This article is free to access.


Presbycusis or age-related hearing loss (ARHL) is one of the most prevalent chronic health problems facing aging populations. Along the auditory pathway, the stations involved in transmission and processing, function as a system of interconnected feedback loops. Regulating hierarchically auditory processing, auditory cortex (AC) neuromodulation can, accordingly, activate both peripheral and central plasticity after hearing loss. However, previous ARHL-prevention interventions have mainly focused on preserving the structural and functional integrity of the inner ear, overlooking the central auditory system. In this study, using an animal model of spontaneous ARHL, we aim at assessing the effects of multisession epidural direct current stimulation of the AC through stereotaxic implantation of a 1-mm silver ball anode in Wistar rats. Consisting of 7 sessions (0.1 mA/10 min), on alternate days, in awake animals, our stimulation protocol was applied at the onset of hearing loss (threshold shift detection at 16 months). Click- and pure-tone auditory brainstem responses (ABRs) were analyzed in two animal groups, namely electrically stimulated (ES) and non-stimulated (NES) sham controls, comparing recordings at 18 months of age. At 18 months, NES animals showed significantly increased threshold shifts, decreased wave amplitudes, and increased wave latencies after click and tonal ABRs, reflecting a significant, spontaneous ARHL evolution. Conversely, in ES animals, no significant differences were detected in any of these parameters when comparing 16 and 18 months ABRs, indicating a delay in ARHL progression. Electrode placement in the auditory cortex was accurate, and the stimulation did not cause significant damage, as shown by the limited presence of superficial reactive microglial cells after IBA1 immunostaining. In conclusion, multisession DC stimulation of the AC has a protective effect on auditory function, delaying the progression of presbycusis.




Fernández del Campo, I. S., Carmona-Barrón, V. G., Diaz, I., Plaza, I., Alvarado, J. C., & Merchán, M. A. (2024). Multisession anodal epidural direct current stimulation of the auditory cortex delays the progression of presbycusis in the Wistar rat. Hearing Research, 444.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free