The double warm-core structure of typhoon lan (2017) as observed through the first japanese eyewall-penetrating aircraft reconnaissance

15Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Upper-tropospheric aircraft reconnaissance was carried out for Typhoon Lan (2017) using a civil jet with a newly developed dropsonde system. This was the first time a Japanese research group observed the inner core of an intense typhoon using dropsondes. This paper describes the warm-core structure in the eye and the associated thermodynamic and kinematic features of the eyewall. During two days of reconnaissance, the typhoon preserved its peak intensity in an environment with strengthening vertical shear. The dropsondes captured a double warm-core structure with a higher perturbation temperature in the middle and upper troposphere, which persisted between the two missions. The two warm cores showed a difference in equivalent potential temperature (θe) of more than 10 K, suggesting different air origins. Saturation-point analysis suggests that the air observed in the upper warm core was entrained from the eyewall. The eyewall updraft in the left-of-shear semicircle had a two-layer structure with a higher θe and lower absolute angular momentum on the inner side of the updraft core. Analyses of the saturation point and parcel method suggest that the warmer air with a θe exceeding 370 K on the inner side of the updrafts originated from the eye boundary layer and was eventually transported into the upper warm core. These results led us to hypothesize that the vertical transport of high-θe air from the eye boundary layer contributed to the continuous eye warming in the upper troposphere against the negative effect of strengthening environmental wind shear on storm intensity. This study demonstrates the significance of eyewall-penetrating upper-tropospheric reconnaissance for monitoring the warm-core structure in the present situa-tion, where accurate measurements of both humidity and temperature for calculating θe can only be made with dropsonde-type expendables.

Cite

CITATION STYLE

APA

Yamada, H., Ito, K., Tsuboki, K., Shinoda, T., Ohigashi, T., Yamaguchi, M., … Shimizu, K. (2021). The double warm-core structure of typhoon lan (2017) as observed through the first japanese eyewall-penetrating aircraft reconnaissance. Journal of the Meteorological Society of Japan, 99(5), 1297–1327. https://doi.org/10.2151/JMSJ.2021-063

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free