DUB: Discrete Unit Back-translation for Speech Translation

12Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

How can speech-to-text translation (ST) perform as well as machine translation (MT)? The key point is to bridge the modality gap between speech and text so that useful MT techniques can be applied to ST. Recently, the approach of representing speech with unsupervised discrete units yields a new way to ease the modality problem. This motivates us to propose Discrete Unit Back-translation (DUB) to answer two questions: (1) Is it better to represent speech with discrete units than with continuous features in direct ST? (2) How much benefit can useful MT techniques bring to ST? With DUB, the back-translation technique can successfully be applied on direct ST and obtains an average boost of 5.5 BLEU on MuST-C En-De/Fr/Es. In the low-resource language scenario, our method achieves comparable performance to existing methods that rely on large-scale external data. Code and models are available at https://github.com/0nutation/DUB.

Cite

CITATION STYLE

APA

Zhang, D., Ye, R., Ko, T., Wang, M., & Zhou, Y. (2023). DUB: Discrete Unit Back-translation for Speech Translation. In Proceedings of the Annual Meeting of the Association for Computational Linguistics (pp. 7147–7164). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/2023.findings-acl.447

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free