Purpose: This work aims to identify differential metabolites and predicting molecular subtypes of breast cancer (BC). Methods: Plasma samples were collected from 96 BC patients and 79 normal participants. Metabolic profiles were determined by liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry based on multivariate statistical data analysis. Results: We observed 64 differential metabolites between BC and normal group. Compared to human epidermal growth factor receptor 2 (HER2)-negative patients, HER2-positive group showed elevated aerobic glycolysis, gluconeogenesis, and increased fatty acid biosynthesis with reduced Krebs cycle. Compared with estrogen receptor (ER)-negative group, ER-positive patients showed elevated alanine, aspartate and glutamate metabolism, decreased glycerolipid catabolism, and enhanced purine metabolism. A panel of 8 differential metabolites, including carnitine, lysophosphatidylcholine (20:4), proline, alanine, lysophosphatidylcholine (16:1), glycochenodeoxycholic acid, valine, and 2-octenedioic acid, was identified for the classification of BC subtypes. These markers showed potential diagnostic value with average area under the curve at 0.925 (95% CI 0.867-0.983) for the training set (n=51) and 0.893 (95% CI 0.847-0.939) for the test set (n=45). Conclusion: Human plasma metabolomics is useful in identifying differential metabolites and predicting breast cancer subtypes.
CITATION STYLE
Fan, Y., Zhou, X., Xia, T. S., Chen, Z., Li, J., Liu, Q., … Qi, L. W. (2016). Human plasma metabolomics for identifying differential metabolites and predicting molecular subtypes of breast cancer. Oncotarget, 7(9), 9925–9938. https://doi.org/10.18632/oncotarget.7155
Mendeley helps you to discover research relevant for your work.