Glucagon-like peptide 1 (GLP-1) improves insulin resistance of adipose tissue in obese humans. However, the mechanism of this effect is unclear. Perturbation of endoplasmic reticulum (ER) homeostasis impairs insulin signaling. We hypothesized that GLP-1 could directly improve insulin signaling in ER-stressed adipocytes. Here, we examined the effects of GLP-1 on ER stress response in fat cells in an obese and insulin-resistant murine model. We found that GLP-1 analog liraglutide reduced ER stress related gene expression in visceral fat cells accompanied by improved systemic insulin tolerance. Consistently, GLP-1 decreased CHOP expression and increased insulin stimulated AKT phosphorylation (p-AKT) in thapsigargin, a ER stress inducer, treated white fat cells differentiated from visceral stromal vascular fraction. We further found blocking CHOP expression increased insulin stimulated p-AKT in ER-stressed fat cells. Of note, we found mTOR signaling pathway contributed to the expression of ATF4 and subsequently the CHOP expression in ER stress response, while GLP-1 inhibited mTOR activity as exemplified by elevated autophagosome formation and increased LC3II/LC3I ratio. These findings suggest that GLP-1 directly modulates the ER stress response partially via inhibiting mTOR signaling pathway, leading to increased insulin sensitivity in adipocytes.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Jiang, Y., Wang, Z., Ma, B., Fan, L., Yi, N., Lu, B., … Liu, R. (2018). GLP-1 improves adipocyte insulin sensitivity following induction of endoplasmic reticulum stress. Frontiers in Pharmacology, 9(OCT). https://doi.org/10.3389/fphar.2018.01168