Comparison of topological charge definitions in Lattice QCD

32Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this paper, we show a comparison of different definitions of the topological charge on the lattice. We concentrate on one small-volume ensemble with 2 flavours of dynamical, maximally twisted mass fermions and use three more ensembles to analyze the approach to the continuum limit. We investigate several fermionic and gluonic definitions. The former include the index of the overlap Dirac operator, the spectral flow of the Wilson–Dirac operator and the spectral projectors. For the latter, we take into account different discretizations of the topological charge operator and various smoothing schemes to filter out ultraviolet fluctuations: the gradient flow, stout smearing, APE smearing, HYP smearing and cooling. We show that it is possible to perturbatively match different smoothing schemes and provide a well-defined smoothing scale. We relate the smoothing parameters for cooling, stout and APE smearing to the gradient flow time τ. In the case of hypercubic smearing the matching is performed numerically. We investigate which conditions have to be met to obtain a valid definition of the topological charge and susceptibility and we argue that all valid definitions are highly correlated and allow good control over topology on the lattice.

Cite

CITATION STYLE

APA

Alexandrou, C., Athenodorou, A., Cichy, K., Dromard, A., Garcia-Ramos, E., Jansen, K., … Zimmermann, F. (2020). Comparison of topological charge definitions in Lattice QCD. European Physical Journal C, 80(5). https://doi.org/10.1140/epjc/s10052-020-7984-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free