Filtered OFDM: An Insight into Intrinsic In-Band Interference and Filter Frequency Response Selectivity

5Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The future mobile networks will face challenges in support of heterogeneous services over a unified physical layer, calling for a waveform with good frequency localization. Filtered orthogonal frequency division multiplexing (f-OFDM), as a representative subband filtered waveform, can be employed to improve the spectrum localization of orthogonal frequency-division multiplexing (OFDM) signal. However, the applied filtering operations will impact the performance in various aspects, especially for narrow subband cases. Unlike existing studies which mainly focus its benefits, this paper investigates two negative consequences inflicted on single subband f-OFDM systems: in-band interference and filter frequency response (FFR) selectivity. The exact-form expression for the in-band interference is derived, and the effect of FFR selectivity is analyzed for both single antenna and multiple antenna cases. The in-band interference-free and nearly-free conditions for f-OFDM systems are studied. A low-complexity block-wise parallel interference cancellation (BwPIC) algorithm and a pre-equalizer are proposed to tackle the two issues caused by the filtering operations, respectively. Numerical results show that narrower subbands suffer more performance degradation compared to wider bands. In addition, the proposed BwPIC algorithm effectively suppresses interference, and pre-equalized f-OFDM (pf-OFDM) considerably outperforms f-OFDM in both single antenna and multi-antenna systems.

Cite

CITATION STYLE

APA

Mao, J., Zhang, L., Xiao, P., & Nikitopoulos, K. (2020). Filtered OFDM: An Insight into Intrinsic In-Band Interference and Filter Frequency Response Selectivity. IEEE Access, 8, 100670–100683. https://doi.org/10.1109/ACCESS.2020.2997316

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free