Corn starch reactive blending with latex from natural rubber using Na+ ions augmented carboxymethyl cellulose as a crosslinking agent

15Citations
Citations of this article
49Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A mixture of corn starch and glycerol plasticizer (CSG) was blended with latex natural rubber (LNR) and carboxymethyl cellulose (CMC). The addition of 10 phr of CMC improved the Young’s modulus (6.7 MPa), tensile strength (8 MPa), and elongation at break (80%) of the CSG/LNR blend. The morphology of the CSG/LNR/CMC blends showed a uniform distribution of LNR particles (1–3 µm) in the CSG matrix. The addition of CMC enhanced the swelling ability and water droplet contact angle of the blends owing to the swelling properties, interfacial crosslinking, and amphiphilic structure of CMC. Fourier transform infrared spectroscopy confirmed the reaction between the C=C bond of LNR and the carboxyl groups (–COO−) of CMC, in which the Na+ ions in CMC acted as a catalyst. Notably, the mechanical properties of the CSG/LNR/CMC blend were improved owing to the miscibility of CSG/CMC and the CMC/LNR interfacial reaction. The CSG/LNR/CMC biodegradable polymer with high mechanical properties and interfacial tension can be used for packaging, agriculture, and medical applications.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Leksawasdi, N., Chaiyaso, T., Rachtanapun, P., Thanakkasaranee, S., Jantrawut, P., Ruksiriwanich, W., … Jantanasakulwong, K. (2021). Corn starch reactive blending with latex from natural rubber using Na+ ions augmented carboxymethyl cellulose as a crosslinking agent. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-98807-x

Readers over time

‘21‘22‘23‘2406121824

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 13

65%

Professor / Associate Prof. 3

15%

Lecturer / Post doc 2

10%

Researcher 2

10%

Readers' Discipline

Tooltip

Engineering 6

32%

Chemistry 5

26%

Materials Science 4

21%

Agricultural and Biological Sciences 4

21%

Save time finding and organizing research with Mendeley

Sign up for free
0