Providing an accurate count of total leukocytes and specific subsets (such as T-cells and B-cells) within small amounts of whole blood is a rather challenging ordeal due to the lack of techniques that enable the separation of leukocytes from a limited amount of whole blood. In a previous study we designed a microfluidic chip utilizing a micropillar array to isolate T-cells and B-cells from the sub-microliter of whole blood. Due to the variability of cells in size, morphology and color intensity, a Histogram of Oriented Gradients (HOG) based Support Vector Machine (SVM) classifier was proposed with an average accuracy of 94%, specificity of 99% and sensitivity of 90%. The HOG can separate the cells from the background with a high accuracy rate however, some noise is similar in shape and size to the actual cells and this results in misclassification. To alleviate this situation, in this study a convolutional neural network is trained and used to distinguish T-cells and B-cells with an accuracy rate of 98%, a specificity of 99% and a sensitivity of 97%. We also propose an HOG feature based SVM classifier to preselect the detection windows to accelerate the detection to process images in less than 10 min. The proposed on-chip cell detecting and counting method will be useful for numerous applications in diagnosis and for monitoring diseases.
CITATION STYLE
Turan, B., Masuda, T., Noor, A. M., Horio, K., Saito, T. I., Miyata, Y., & Arai, F. (2018). High accuracy detection for T-cells and B-cells using deep convolutional neural networks. ROBOMECH Journal, 5(1). https://doi.org/10.1186/s40648-018-0128-4
Mendeley helps you to discover research relevant for your work.