The persistent Na+ current (INaP) is important for neuronal functions and can play a role in several pathologies, although it is small compared to the transient Na+ current (INaT). Notably, INaP is not a real persistent current because it undergoes inactivation with kinetics in the order of tens of seconds, but this property has often been overlooked. Na+ channel blockers, drugs used for treating epilepsy and other diseases, can inhibit INaP, but the mechanism of this action and the conditions in which INaP can be actually inhibited have not been completely clarified yet. We evaluated the action of phenytoin (PHT), a prototype anti-epileptic Na+ channel blocker, on INaP inactivation in pyramidal neurons of rat sensorimotor cortical slices at different concentrations, from 5 to 100 μM. PHT did not modify INaP evoked with depolarizing voltage ramps of 50 or 100 mVs-1, but decreased INaP evoked by slower voltage ramps (10 mVs-1). However, at all of the tested concentrations, PHT decreased INaP evoked by faster ramps when they were preceded by inactivating pre-pulses. Moreover, PHT shifted towards negative potentials the voltage-dependence of INaP inactivation and accelerated its kinetics of development also at depolarized potentials (+40 mV), not consistently with a simple inactivated state stabilizer. Therefore, our study shows a prominent PHT effect on INaP inactivation rather than an open channel block, which is instead often implied. INaP is inhibited by PHT only in conditions that induce major INaP inactivation. These results highlight the importance of INaP inactivation not only for physiological functions but also as drug target, which could be shared by other therapeutic drugs. Through this action PHT can reduce INaP-induced long-lasting pathological depolarisations and intracellular sodium overload, whereas shorter INaP actions should not be modified. These properties set the conditions of efficacy and the limits of PHT as INaP inhibitor. © 2013 Colombo et al.
CITATION STYLE
Colombo, E., Franceschetti, S., Avanzini, G., & Mantegazza, M. (2013). Phenytoin Inhibits the Persistent Sodium Current in Neocortical Neurons by Modifying Its Inactivation Properties. PLoS ONE, 8(1). https://doi.org/10.1371/journal.pone.0055329
Mendeley helps you to discover research relevant for your work.