Seasonal patterns of fine root dynamics and their contribution to net primary production in hinoki cypress (Chamaecyparis obtusa) and konara oak (Quercus serrata) forests

5Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Key message: Fine root and litterfall are major contributor of NPP and fine root production may reflect forest productivity in a warm-temperate forest in Japan. Abstract: Forest ecosystems play an important role as the major carbon sink on land, with fine root dynamics and litterfall representing major carbon fluxes. The objectives of this research were to estimate NPP including annual fine root production values, to investigate fine root dynamics and the relationships between above– and belowground organs in konara oak (Quercus serrata) and hinoki cypress (Chamaecyparis obtusa) forests. Litterfall was collected seasonally for 1 year from June 2013. The ingrowth core method and the sequential soil core method were applied with a root litterbag experiment to estimate fine root (< 2 mm) production (FRP), mortality (FRM), and decomposition (FRD) for 1 year (from 2013 to 2014), using the continuous inflow estimate method and the simplified decision matrix. The total NPP ranged from 8.2 to 13.9 (t ha− 1 yr− 1), and the sum of aboveground litterfall and FRP accounted for 60% of the total NPP on average, confirming the significance of above- and belowground litter for the forest NPP as a source of detritus for the decomposer system. In hinoki cypress stand, fine root biomass peaked in the end of winter while fine root necromass showed the highest peak in late summer. In konara oak stand, only very fine root (< 0.05 mm) biomass and necromass demonstrated significant seasonal patterns. The seasonal patterns of fine root production did not differ between forest types and root diameter classes. We found a possible relationship between above- and belowground production and fine root production tended to be high in productive forests. This study improves our understanding of different patterns of carbon dynamics between temperate broadleaved and coniferous forest ecosystems.

Cite

CITATION STYLE

APA

An, J. Y., & Osawa, A. (2021). Seasonal patterns of fine root dynamics and their contribution to net primary production in hinoki cypress (Chamaecyparis obtusa) and konara oak (Quercus serrata) forests. Trees - Structure and Function, 35(1), 255–271. https://doi.org/10.1007/s00468-020-02030-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free