Activated chemical bonds in nanoporous and amorphous iridium oxides favor low overpotential for oxygen evolution reaction

57Citations
Citations of this article
57Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

To date, the search for active, selective, and stable electrocatalysts for the oxygen evolution reaction (OER) has not ceased and a detailed atomic-level design of the OER catalyst remains an outstanding (if not, compelling) problem. Considerable studies on different surfaces and polymorphs of iridium oxides (with varying stoichiometries and dopants) have emerged over the years, showing much higher OER activity than the conventionally reported rutile-type IrO2. Here, we have considered different metastable nanoporous and amorphous iridium oxides of different chemical stoichiometries. Using first-principles electronic structure calculations, we investigate the (electro)chemical stability, intercalation properties, and electronic structure of these iridium oxides. Using an empirical regression model between the Ir-O bond characteristics and the measured OER overpotentials, we demonstrate how activated Ir-O bonds (and the presence of more electrophilic oxygens) in these less understood polymorphs of iridium oxides can explain their superior OER performance observed in experiments.

Cite

CITATION STYLE

APA

Lee, S., Lee, Y. J., Lee, G., & Soon, A. (2022). Activated chemical bonds in nanoporous and amorphous iridium oxides favor low overpotential for oxygen evolution reaction. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-30838-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free