The constrained outbreak of COVID-19 in Mainland China has recently been regarded as a successful example of fighting this highly contagious virus. Both the short period (in about three months) of transmission and the sub-exponential increase of confirmed cases in Mainland China have proved that the Chinese authorities took effective epidemic prevention measures, such as case isolation, travel restrictions, closing recreational venues, and banning public gatherings. These measures can, of course, effectively control the spread of the COVID-19 pandemic. Meanwhile, they may dramatically change the human mobility patterns, such as the daily transportation-related behaviors of the public. To better understand the impact of COVID-19 on transportation-related behaviors and to provide more targeted anti-epidemic measures, we use the huge amount of human mobility data collected from Baidu Maps, a widely-used Web mapping service in China, to look into the detail reaction of the people there during the pandemic. To be specific, we conduct data-driven analysis on transportation-related behaviors during the pandemic from the perspectives of 1) means of transportation, 2) type of visited venues, 3) check-in time of venues, 4) preference on "origin-destination'' distance, and 5) "origin-transportation-destination'' patterns. For each topic, we also give our specific insights and policy-making suggestions. Given that the COVID-19 pandemic is still spreading in more than 200 overseas countries, infecting millions of people worldwide, the insights and suggestions provided here may help fight COVID-19.
CITATION STYLE
Huang, J., Wang, H., Fan, M., Zhuo, A., Sun, Y., & Li, Y. (2020). Understanding the Impact of the COVID-19 Pandemic on Transportation-related Behaviors with Human Mobility Data. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 3443–3450). Association for Computing Machinery. https://doi.org/10.1145/3394486.3412856
Mendeley helps you to discover research relevant for your work.