Modulation of pPS10 host range by DnaA

19Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Narrow-host-range plasmid pPS10, originally found in Pseudomonas savastanoi, is unable to replicate in other strains such as Escherichia coli. Here, we report that the establishment of pPS10 in E. coli can be achieved by a triple mutation in the dnaA gene of E. coli (dnaA403), leading to Q14amber, P297S and A412V changes in the DnaA host replication protein (DnaA403 mutant). As the E. coli strain used contained double amber suppressor mutations (supE, supF), the amber codon in dnaA403 can be translated into glutamine or tyrosine. Genetic analysis of DnaA proteins containing either the individual changes or their different combinations suggests that the P297S mutation is crucial for the establishment of the pPS10 replicon in E. coli. The data also indicate that the P297S change is toxic to the cell and that the additional mutations in DnaA403 could contribute to neutralize this toxicity. To our knowledge, this work reports the first chromosome mutant described in the literature that allows the host range broadening of a plasmid, highlights the essential role played by DnaA in the establishment of pPS10 replicon in E. coli and provides support for the hypothesis that interactions between RepA and DnaA modulate the establishment of pPS10 in that bacteria and probably in other species.

Cite

CITATION STYLE

APA

Maestro, B., Sanz, J. M., Faelen, M., Couturier, M., Díaz-Orejas, R., & Fernández-Tresguerres, E. (2002). Modulation of pPS10 host range by DnaA. Molecular Microbiology, 46(1), 223–234. https://doi.org/10.1046/j.1365-2958.2002.03155.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free