Directing ricin-based immunotoxins with targeting affibodies and KDEL signal peptide to cancer cells effectively induces apoptosis and tumor suppression

6Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The plant toxin ricin, especially its cytotoxic A chain (RTA), can be genetically engineered with targeting ligands to develop specific anti-cancer recombinant immunotoxins (RITs). Here, we used affibody molecules targeting two cancer biomarkers, the receptors HER2 and EGFR, along with the KDEL signal peptide to construct two cancer-specific ricin-based RITs, HER2Afb-RTA-KDEL and EGFRAfb-RTA-KDEL. The affibodies successfully provided target-specificity and subsequent receptor-mediated endocytosis and the KDEL signal peptide routed the RITs through the retrograde transport pathway, effectively delivering RTA to the cytosol as well as avoiding the alternate recycling pathway that typical cancer cells frequently have. The in vivo efficacy of RITs was enhanced by introducing the albumin binding domain (AlBD) to construct AlBD/HER2Afb/RTA-KDEL. Systemic administration of AlBD-containing RITs to tumor-bearing mice significantly suppressed tumor growth without any noticeable side-effects. Collectively, combining target-selective affibody molecules, a cytotoxic RTA, and an intracellularly designating peptide, we successfully developed cancer-specific and efficacious ricin-based RITs. This approach can be applied to develop novel protein-based “magic bullets” to effectively suppress tumors that are resistant to conventional anti-cancer drugs. Graphical Abstract: [Figure not available: see fulltext.].

Cite

CITATION STYLE

APA

Park, S. G., Kim, H., Jun, H., Choi, S. Y., Kim, E., & Kang, S. (2022). Directing ricin-based immunotoxins with targeting affibodies and KDEL signal peptide to cancer cells effectively induces apoptosis and tumor suppression. Journal of Nanobiotechnology, 20(1). https://doi.org/10.1186/s12951-022-01601-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free