Modeling an evolutionary conserved circadian cis-element

27Citations
Citations of this article
68Readers
Mendeley users who have this article in their library.

Abstract

Circadian oscillator networks rely on a transcriptional activator called CLOCK/CYCLE (CLK/CYC) in insects and CLOCK/BMAL1 or NPAS2/BMAL1 in mammals. Identifying the targets of this heterodimeric basic-helix-loop-helix (bHLH) transcription factor poses challenges and it has been difficult to decipher its specific sequence affinity beyond a canonical E-box motif, except perhaps for some flanking bases contributing weakly to the binding energy. Thus, no good computational model presently exists for predicting CLK/CYC, CLOCK/BMAL1, or NPAS2/BMAL1 targets. Here, we use a comparative genomics approach and first study the conservation properties of the best-known circadian enhancer: a 69-bp element upstream of the Drosophila melanogaster period gene. This fragment shows a signal involving the presence of two closely spaced E-box-like motifs, a configuration that we can also detect in the other four prominent CLK/CYC target genes in flies: timeless, vrille, Pdp1, and cwo. This allows for the training of a probabilistic sequence model that we test using functional genomics datasets. We find that the predicted sequences are overrepresented in promoters of genes induced in a recent study by a glucocorticoid receptor-CLK fusion protein. We then scanned the mouse genome with the fly model and found that many known CLOCK/BMAL1 targets harbor sequences matching our consensus. Moreover, the phase of predicted cyclers in liver agreed with known CLOCK/BMAL1 regulation. Taken together, we built a predictive model for CLK/CYC or CLOCK/BMAL1-bound cis-enhancers through the integration of comparative and functional genomics data. Finally, a deeper phylogenetic analysis reveals that the link between the CLOCK/BMAL1 complex and the circadian cis-element dates back to before insects and vertebrates diverged. © 2008 Paquet et al.

Cite

CITATION STYLE

APA

Paquet, E. R., Rey, G., & Naef, F. (2008). Modeling an evolutionary conserved circadian cis-element. PLoS Computational Biology, 4(2). https://doi.org/10.1371/journal.pcbi.0040038

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free