Seasonality in trauma admissions – Are daylight and weather variables better predictors than general cyclic effects?

26Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

Background Trauma is a leading global cause of death, and predicting the burden of trauma admissions is vital for good planning of trauma care. Seasonality in trauma admissions has been found in several studies. Seasonal fluctuations in daylight hours, temperature and weather affect social and cultural practices but also individual neuroendocrine rhythms that may ultimately modify behaviour and potentially predispose to trauma. The aim of the present study was to explore to what extent the observed seasonality in daily trauma admissions could be explained by changes in daylight and weather variables throughout the year. Methods Retrospective registry study on trauma admissions in the 10-year period 2001–2010 at Oslo University Hospital, Ullevål, Norway, where the amount of daylight varies from less than 6 hours to almost 19 hours per day throughout the year. Daily number of admissions was ana-lysed by fitting non-linear Poisson time series regression models, simultaneously adjusting for several layers of temporal patterns, including a non-linear long-term trend and both seasonal and weekly cyclic effects. Five daylight and weather variables were explored, including hours of daylight and amount of precipitation. Models were compared using Akaike’s Information Criterion (AIC). Results A regression model including daylight and weather variables significantly outperformed a traditional seasonality model in terms of AIC. A cyclic week effect was significant in all models. Conclusion Daylight and weather variables are better predictors of seasonality in daily trauma admissions than mere information on day-of-year.

Cite

CITATION STYLE

APA

Røislien, J., Søvik, S., & Eken, T. (2018). Seasonality in trauma admissions – Are daylight and weather variables better predictors than general cyclic effects? PLoS ONE, 13(2). https://doi.org/10.1371/journal.pone.0192568

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free