Inter- and intra-limb coordination during initial sprint acceleration

7Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In complex movements, centre of mass translation is achieved through effective joint and segment rotations. Understanding segment organisation and coordination is therefore paramount to understanding technique. This study sought to comprehensively describe inter- and intra-limb coordination and assess step-to-step changes and between-individual variation in coordination during initial sprint acceleration. Twenty-one highly trained to world class male (100 m PB 9.89-11.15 s) and female (100 m PB:11.46-12.14 s) sprinters completed sprint trials of at least 20 m from which sagittal plane kinematics were obtained for the first four steps using inertial measurement units (200 Hz). Thigh-thigh, trunk-shank and shank-foot coordination was assessed using a modified vector coding and segment dominancy approach. Common coordination patterns emerged for all segment couplings across sexes and performance levels, suggesting strong task constraints. Between-individual variation in inter-limb thigh coordination was highest in early flight, while trunk-shank and shank-foot variation was highest in late flight, with a second peak in late stance for the trunk-shank coupling. There were clear step-to-step changes in coordination, with step 1 being distinctly different to subsequent steps. The results demonstrate that inter-limb coordination is primarily anti-phase and trailing leg dominant while ankle motion in flight and late stance appears to be primarily driven by the foot.

Cite

CITATION STYLE

APA

Donaldson, B. J., Bezodis, N. E., & Bayne, H. (2022). Inter- and intra-limb coordination during initial sprint acceleration. Biology Open, 11(10). https://doi.org/10.1242/bio.059501

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free