Grafting onto drought tolerant rootstocks has been proposed as a useful strategy to overcome future water scarcity periods. The ‘de Ramellet’ tomato is a drought tolerant landrace selected under semiarid Mediterranean summer conditions under rain-fed or low irrigation. In this manuscript, the responses of a commercial hybrid ‘de Ramellet’ genotype grafted onto a traditional ‘de Ramellet’ (RL) and a commercial Maxifort (Mx) tomato rootstocks under commercial greenhouse conditions are studied. Non-grafted (NON) and self-grafted (SELF) plants were used as controls. Two water regimes were established: well-watered (WW, covering plant water demands) and water deficit (WD, reducing 50% irrigation as compared to WW). The results confirm an improvement in agronomic performance of Mx as compared to NON, but also show a similar improving effect of RL. Grafting enhanced plant growth regardless of the rootstock under WW conditions. Similarly, water-use efficiency (assessed as leaf carbon isotope composition) increased in grafted plants under WD treatment as compared to NON. Despite the lack of significant differences, RL tended to promote higher fruit production and fruit number than Mx, irrespective of the water treatment, whereas RL was the single graft combination with higher fruit production than NON under WD. In conclusion, the results uncover the potential of drought-adapted landraces to be used as rootstocks in order to increase plant growth and fruit production under both well-watered and water deficit cultivation conditions.
CITATION STYLE
Fullana-Pericàs, M., Conesa, M., Ribas-Carbó, M., & Galmés, J. (2020). The use of a tomato landrace as rootstock improves the response of commercial tomato under water deficit conditions. Agronomy, 10(5). https://doi.org/10.3390/agronomy10050748
Mendeley helps you to discover research relevant for your work.