Fragment based molecular dynamics for drug design

1Citations
Citations of this article
1Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Molecular docking is a computationally efficient method used to predict the conformations adopted by the ligand within a target-binding site. A positive aspect of conventional docking is the possibility of easily distributing the calculation on dedicated grid or cluster. The receptor is usually kept rigid, therefore the changes in the binding pocket geometry induced by the ligand is overlooked. Here we present a new docking approach (DynDock) that exploits molecular dynamics to preserve the flexibility of the receptor. To maintain high computational efficiency, DynDock has been developed to be distributed on a grid. The main advantages of this method are the full flexible molecular docking achieved during the simulation and the reduced number of compounds collected.

Author supplied keywords

Cite

CITATION STYLE

APA

Sessa, L., Di Biasi, L., Concilio, S., & Piotto, S. (2018). Fragment based molecular dynamics for drug design. In Communications in Computer and Information Science (Vol. 830, pp. 49–58). Springer Verlag. https://doi.org/10.1007/978-3-319-78658-2_4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free