Capsules with bacteria and fungi in distinct compartments: A platform for studying microbes from different kingdoms and their cross-communication

1Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

Recently, we have created ‘artificial cells’ with an architecture mimicking that of typical eukaryotic cells. Our design uses common biopolymers like alginate and chitosan to create multi-compartment capsules (MCCs) via oil-free microfluidics. MCCs (~ 500 μm in diameter) can be engineered with multiple inner compartments, each with a distinct payload. This mimics the distinct organelles in eukaryotic cells, each of which has unique properties. In this study, we encapsulate microbial cells from two distinct kingdoms — Pseudomonas aeruginosa (bacteria) and Candida albicans (fungi) — in the inner compartments of MCCs. The two microbes are commonly found in biofilms at sites of infection in humans. We first demonstrate that the MCC can serve as a simple platform to observe the comparative growth of the cells in real time. Unlike typical co-culture in solution or on agar plates, the cells can grow in their own compartments without direct physical contact. Moreover, the hydrogel matrix in the compartments mimics the three-dimensional (3-D) environment that cells naturally encounter during their growth. Small molecules added to the solution are shown to permeate through the capsule walls and affect cell growth: for example, cationic surfactants inhibit the fungi but not the bacteria. Conversely, low pH and kanamycin inhibit the bacteria but not the fungi. Also, when the bacteria are present in adjacent compartments, the fungal cells mostly stay in a yeast morphology, meaning as spheroidal cells. In contrast, in the absence of the bacteria, the fungi transition into hyphae, i.e., long multicellular filaments. The inhibition of this morphological switch in fungal cells is shown to be induced by signaling molecules (specifically, the quorum sensing autoinducer-1 or AI-1) secreted by the bacteria. Thus, the MCC platform can also be used to detect cross-kingdom signaling between the compartmentalized microbes.

References Powered by Scopus

Biofilms: An emergent form of bacterial life

4012Citations
N/AReaders
Get full text

Growth of Candida albicans hyphae

854Citations
N/AReaders
Get full text

Small talk: Cell-to-cell communication in bacteria

642Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Bibliometric analysis and visualization of quorum sensing research over the last two decade

1Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Ahn, S. H., Karlsson, A. J., Bentley, W. E., & Raghavan, S. R. (2022). Capsules with bacteria and fungi in distinct compartments: A platform for studying microbes from different kingdoms and their cross-communication. PLoS ONE, 17(11 November). https://doi.org/10.1371/journal.pone.0277132

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 3

60%

Researcher 2

40%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 2

33%

Engineering 2

33%

Biochemistry, Genetics and Molecular Bi... 1

17%

Materials Science 1

17%

Save time finding and organizing research with Mendeley

Sign up for free