By the use of deletions, point mutations, and gene fusions, we show that the protein product of the F factor pifC gene is responsible for F factor inhibition of plasmid RP4 conjugal transfer. Deletion analysis of pif sequences carried by pSC101-F chimeric plasmids demonstrated that removal of all or part of the pifC coding sequence greatly decreased or abolished the ability of these plasmids to inhibit RP4 transfer. Amber mutations in the pifC gene eliminated inhibition in a Su- host strain but not in a Su+ (supF) host. Plasmids carrying nonpolar pifC mutations did not decrease the efficiency of RP4 transfer when present in trans. Whereas pifC+ plasmids inhibited RP4 transfer, the presence of RP4 in the same cell as F'lac increased F'lac Pif activity approximately 1,000-fold. This effect most likely resulted from the binding of the pifC product to RP4 DNA and concomitant derepression of the F factor pif operon. PifC inhibited trans mobilization of pMS204, a nonconjugative plasmid carrying the RP4 oriT locus, by the RP1 derivative pUB307. pMS204 had no trans effect on pif operon expression, whereas pUB307 increased F'lac Pif expression, as did RP4. Our results suggest that the pifC product inhibits expression of one or more RP4 genes, the products of which are required for conjugal transfer of RP4 and are required in trans for mobilization of nonconjugal RP4 oriT containing plasmids.
CITATION STYLE
Miller, J. F., Lanka, E., & Malamy, M. H. (1985). F factor inhibition of conjugal transfer of broad-host-range plasmid RP4: Requirement for the protein product of pif operon regulatory gene pifC. Journal of Bacteriology, 163(3), 1067–1073. https://doi.org/10.1128/jb.163.3.1067-1073.1985
Mendeley helps you to discover research relevant for your work.