Autonomous Underwater Vehicles (AUVs) are the mainstream equipment for underwater scientific research and engineering. However, it remains a great challenge for AUVs to carry out near-seabed operations because of their poor maneuverability. In this paper, a new design for a high-maneuverability disc-shapedAUVis proposed, namely, the Autonomous Underwater Helicopter (AUH).We designed the AUH's propulsion system through dynamic analysis based on the unique disc shape. The experimental prototype was built by mechatronics technology, after which several motion experiments were carried out to demonstrate the high maneuverability. We find that the prototype has high maneuverability: it can cruise at 0.8m/s (about 1.5 knots), at least; its turning radius is zero and its turning speed is at least 20 deg/s; and the motion of specific curves in a small range was completed. It is demonstrated that over-actuation is not necessary for the high-maneuverability AUH because of its unique disc shape. A propulsion system consisting of four propellers and a buoyancy adjustment system is used for the highly maneuverable AUH. In addition, the AUH may be a solution for near-seafloor operations.
CITATION STYLE
Wang, Z., Liu, X., Huang, H., & Chen, Y. (2019). Development of an autonomous underwater helicopter with high maneuverability. Applied Sciences (Switzerland), 9(19). https://doi.org/10.3390/app9194072
Mendeley helps you to discover research relevant for your work.